Effect of non-chemical weed management and planting geometry on weed growth, yield and economics in dry direct-seeded rice (*Oryza sativa*) cultivars

MONA NAGARGADE¹, M.K. SINGH² AND VISHAL TYAGI³

Banaras Hindu University, Varanasi, Uttar Pradesh 221 005

Received: May 2018; Revised accepted: July 2019

ABSTRACT

A field experiment was conducted during the rainy (kharif) seasons of 2015 and 2016 Varanasi, Uttar Pradesh, to study the effect of non-chemical weed management and planting geometry on weed growth, yield and profitability of dry direct-seeded rice (*Oryza sativa* L.) cultivars. The experiment consisted of 2 planting geometry (Seed drill sown crop and square planting), 2 cultivars (`Arize 6444` and `PHB 71`) and 5 non-chemical weed management treatments (weedy, 1 hoeing at 12 DAS fb hand-weeding at 30 DAS, 1 hoeing at 12 DAS fb Sesbania incorporated at 45 DAS, 1 hoeing at 12 DAS fb straw mulching @ 4 t/ha fb hand-weeding at 40 DAS, 1 hoeing at 12 DAS fb straw mulching (6 t/ha). Square planting recorded lower weed biomass, higher weed-control efficiency, grain yield (4.19 t/ha) and net returns (₹41,605.57/ha). Rice cultivar `Arize 6444` also recorded lower weed biomass, higher weed-control efficiency, higher grain yield (4.24 t/ha) and net returns (₹42,256.73/ha). One hoeing at 12 DAS fb hand weeding at 30 DAS reduced weed growth and increased weed-control efficiency, grain yield (4.85 t/ha) and net returns (₹57,018.94/ha).

Key words: Cultivar, Dry direct-seeded rice, Non-chemical weed-management, Planting geometry

Irrigated rice occupies more than 50% of world rice area meeting more than 75% of global rice requirement (FAO, 2007). Unfortunately, this most important rice ecosystem is being increasingly endangered due to water scarcity threatening the world food security (Singh *et al*., 2016). Increased production costs, labour shortages, increased wages, and decreased groundwater availability have resulted in switch over from traditional paddy nursery transplanting to dry direct seeding of rice (DSR) in many Asian countries, including India (Mahajan *et al*., 2013). Direct-seeded rice needs only 34% of the total labour requirement and saves 29% of the total cost of the transplanted crop (Ho and Romli, 2000). It also allows early establishment of succeeding wheat crops, reduces methane emissions and ensures higher profit in areas with assured water supply (Balasubramanian and Hill, 2000). Apart from that, weeds are a major biotic stress in DSR, as they increase production costs and cause 40–100% yield loss (Choubey *et al*., 2001). Weeds in DSR emerge simultaneously with germinating rice seedling, resulting in severe competition for nutrients, light, moisture and space. Herbicides are being widely used in DSR but, with the threat of herbicide resistance and environmental pollution (Holt, 2001), interest has increased in non-chemical weed management (cultural) practices like mechanical weeding, manual weeding, Sesbania co-culture and straw mulching. Non-chemical weed management methods are mainly based on ecological principles which reduce weed growth and space capture by weed (Radosevich *et al*., 1997). Mechanical weed control and hoeing may also suppress the weeds and increase grain yield in DSR (Rao *et al*., 2007). The use of mechanical weederers is feasible only where rice is planted in rows (Chauhan, 2012). Intercropping of Sesbania can reduce both weed density and biomass to a great extent due to decreased light transmission through the canopy (Baumann *et al*., 2000) as well as supply 58–79 kg N/ha when incorporated in alternate rows at 50 days of growth and increase rice growth under direct-seeded rice (Sharma and Ghosh, 2000). Application of rice straw for controlling weeds in different crops, indicated that rice straw can be used for mulching, which benefits in preventing weed growth as well as supplies organic matter for N-fixation by heterotrophic N-fixing microorganisms (Mendoza and Samson, 1999). Thus, use of rice straw as fertilizer as well as suppressing the weed growth due to its allelopathic potential can be a good approach to reduce the herbicide load.
Crop residues are known to have a chemical (allelopathic) as well as a physical effect on the growth of subsequent crops and weeds (Mason-Sedun et al., 1986).

Use of weed competitive cultivars is an attractive, low-cost strategy for controlling weed and obtaining higher yield (Andrew et al., 2015). Early maturing rice cultivars and rice hybrids have a smothering effect on weeds due to their improved vigour and early crop canopy cover (Chauhan and Johnson, 2010a). Hybrids exhibit high tillering ability with droopy lower leaves that shade out weeds at early growth, and erect, thick, dark green upper leaves that enhance photosynthetic efficiency at the reproductive stage (WARDA, 1999). Changes in planting geometry and seeding rates may affect weed dynamics and resource use in crops (Khan et al., 2009). The optimum spacing ensures the plant to grow in their both aerial and underground parts through efficient utilization of solar radiation and nutrients (Khan et al., 2005). There is potential for growing hybrids in dry-seeded conditions if seeds can be planted at low seeding rates under wider row spacing. This will help to reduce cost of cultivation because of high cost of hybrid seeds (Chauhan and Opena, 2013).

Therefore, strategies to manage weeds in DSR should emphasize making the crop more competitive by seeding rice optimally and reducing the competitiveness of weeds by using suitable hybrid rice cultivars. Considering the above facts, the present investigation was undertaken to study the effect of non-chemical weed management and planting geometry on weed growth, grain yield and economics in dry DSR.

MATERIALS AND METHODS

A field experiment was carried out during kharif seasons of 2015 and 2016 at the Agricultural Research Farm, Banaras Hindu University, Varanasi (25° 18' N', 83° 03' and 128.93 m above the mean sea-level), Uttar Pradesh. The site was well drained sandy clay loam soil, non-saline (EC 0.21 and 0.20 dS/m) with pH 7.49 and 7.52 (1: 2.5 soil : water) and contained 0.46% and 0.48% organic carbon, low in available P (180.21 and 182.67 kg/ha), medium in available K (182.67 and 182.67 kg/ha), medium in available P (22.12 and 22.85 kg/ha) and medium in available K (215.6 and 215.58 kg/ha) during 2015 and 2016, respectively. The weekly mean maximum temperature, during the period of crop growth of both years ranged from 24.6 to 42.6°C (2015) and 25.4 to 41.0°C (2016). The weekly mean minimum temperature varied 29.8°C–16.2°C (2015) and 29.9°C–11.7°C (2016) while total rainfall received was 881.3 mm (2015) and 1,192.2 mm (2016). The experiment was laid out in a split-plot design consisting of 20 treatment combinations. Two spacing (S1, 25 cm × 25 cm row-to-row and plant-to-plant spacing) and 2 cultivars (V1, ‘Arize 6444’; V2, ‘PHB 71’) were assigned in main plot and 5 non-chemical weed management treatments in subplot, viz. W1, weedy; W2, 1 hoeing at 12 days after sowing (DAS) fb hand weeding at 30 DAS; W3, 1 hoeing at 12 DAS fb Sesbania co-culture and incorporated at 45 DAS (Sesbania was sown between inter-row spaces after hoeing at 12 DAS at seed rate of 25 kg/ha and incorporated manually at 45 days after sowing); W4, One hoeing at 12 DAS fb straw mulching @ 4 t/ha fb hand-weeding at 40 DAS; W5, 1 hoeing at 12 DAS fb straw mulching @ 6 t/ha were taken and was replicated thrice.

The field was ploughed and leveled before start of monsoon, thereafter, rice seeds were sown on 22 June 2015 and 28 June 2016 during first and second year respectively. Irrigation was applied for proper germination after sowing the rice seeds. Uniform dose of nitrogen (150 kg/ha), P2O5 (60 kg/ha) and K2O (60 kg/ha) were applied in all plots through urea (46% N), di-ammonium phosphate (46% P2O5 and 18% N) and muriate of potash (60% K2O) respectively. Half dose of nitrogen, full dose of phosphorous and potassium were applied basal and remaining nitrogen was applied in 2 equal splits at tillering and panicle–initiation stages. One uniform hoeing was done 12 days after sowing with hand hoe in all the plots except weedy. Standard practices were followed to record biometrical observations and yield. Gross return/ha was calculated on the basis of current minimum support price declared by government for prevailing season. The net returns was calculated as:

\[\text{Net returns (₹/ha)} = \frac{\text{Gross returns (₹/ha)} - \text{Cost of cultivation (₹/ha)}}{\text{yield}} \]

The weed biomass of grasses, sedges and broad leaf weeds were recorded at 90 DAS from the uprooted weeds falling in quadrat (1 m × 1 m) placed at 2 randomly selected spots in each plot. The samples were first sun dried and then dried in oven at 70°C until samples obtained constant weight. Weed biomass data were subjected to square root transformation (x+0.5) before statistical analysis. Weed–control efficiency (WCE) was calculated using the weed biomass data in various treatments as suggested by Mani et al. (1973).

\[\text{WCE} = \frac{\text{WDM}_c - \text{WDM}_t}{\text{WDM}_c} \times 100 \]

where \(\text{WDM}_c \) weed biomass (g/m²) in control plot; \(\text{WDM}_t \) weed biomass (g/m²) in treated plot.

All observed data were subjected to statistical analysis as per standard procedure (Gomez and Gomez, 1984), to draw a valid conclusion and data were averaged over 2 years.
RESULTS AND DISCUSSION

Relative composition of weed flora

The relative composition of major weed flora among grasses were Cynodon dactylon (11.17 and 11.07 %), Echinochloa colona (11.13 and 11.16%) and Echinochloa crus-galli (8.36 and 8.30%) among sedges; Cyperus iria (9.24 and 9.90%), Cyperus difformis (8.17 and 8.28%), Fimbristylis miliacea (12.83 and 11.48%) and among broad-leaf weeds; Ammannia baccifera (11.76 and 11.57%), Caesulia axillaris (8.73 and 9.04%); and Phyllanthus fraternus (9.70 and 9.93%) among grasses during both the years.

Weed biomass

Square planting recorded significantly lesser weed biomass of grasses, sedges and broad-leaf weeds as compared to the seed drill sown crop (Table 1). This might be due to optimum space available for crop growth which suppressed weed growth. Similar findings were also reported by Nichols et al. (2009). Rice cultivar ‘Arize 6444’ recorded significantly lesser weed biomass of grasses, sedges and broad leaf weed than ‘PHB 71’ during 2015 as well as 2016. This might be due to higher weed suppression potential of ‘Arize 6444’ cultivar. Similar findings were also reported by Tuong et al. (2000). Amongst weed management practices, 1 hoeing at 12 DAS fb hand weeding at 30 DAS recorded significantly lowest weed biomass of grasses, sedges and broad leaf weeds at 90 DAS. This might be due to removal of weed at critical crop–weed competition period that increased early canopy development of crop and reduced weed growth. Similar findings were also reported by Johnson et al. (2004).

Weed-control efficiency

Higher weed-control efficiency was recorded in case of square planting and ‘Arize 6444’ during both the years. This might be due to higher weed suppression ability and reduced weed biomass in these treatments. Amongst weed management methods, 1 hoeing at 12 DAS fb hand weeding at 30 DAS recorded the highest weed-control efficiency followed by 1 hoeing at 12 DAS fb Sesbania incorporated at 45 DAS during both the years (Table 1).

Table 1. Effect of planting geometry, cultivars and weed management on weed biomass and weed-control efficiency in dry direct seeded rice (average data of 2 years)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grasses</th>
<th>Sedges</th>
<th>Broad leaf weed</th>
<th>Weed-control efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5 cm (Seed drill sown crop)</td>
<td>14.66</td>
<td>11.03</td>
<td>11.29</td>
<td>37.03</td>
</tr>
<tr>
<td></td>
<td>(218.87)</td>
<td>(124.88)</td>
<td>(131.66)</td>
<td></td>
</tr>
<tr>
<td>25 cm × 25 cm (Square planting)</td>
<td>13.70</td>
<td>10.22</td>
<td>10.26</td>
<td>40.02</td>
</tr>
<tr>
<td></td>
<td>(191.42)</td>
<td>(107.77)</td>
<td>(110.26)</td>
<td></td>
</tr>
<tr>
<td>SEm±</td>
<td>0.06</td>
<td>0.04</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>0.18</td>
<td>0.12</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Cultivar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Arize 6444’</td>
<td>13.91</td>
<td>10.37</td>
<td>10.50</td>
<td>39.19</td>
</tr>
<tr>
<td></td>
<td>(197.13)</td>
<td>(110.64)</td>
<td>(115.25)</td>
<td></td>
</tr>
<tr>
<td>‘PHB 71’</td>
<td>14.45</td>
<td>10.88</td>
<td>11.05</td>
<td>37.86</td>
</tr>
<tr>
<td></td>
<td>(213.16)</td>
<td>(121.68)</td>
<td>(126.66)</td>
<td></td>
</tr>
<tr>
<td>SEm±</td>
<td>0.06</td>
<td>0.04</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>0.18</td>
<td>0.12</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Weed management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weedy check</td>
<td>17.44</td>
<td>13.80</td>
<td>14.98</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(304.13)</td>
<td>(190.10)</td>
<td>(224.39)</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb hand weeding at 30 DAS</td>
<td>11.44</td>
<td>7.99</td>
<td>8.88</td>
<td>62.09</td>
</tr>
<tr>
<td></td>
<td>(130.67)</td>
<td>(63.60)</td>
<td>(78.92)</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb Sesbania incorporated at 45 DAS</td>
<td>12.97</td>
<td>9.81</td>
<td>9.38</td>
<td>51.09</td>
</tr>
<tr>
<td></td>
<td>(168.29)</td>
<td>(96.23)</td>
<td>(88.01)</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb straw mulching 4 t/ha fb hand weeding at 40 DAS</td>
<td>15.17</td>
<td>11.24</td>
<td>10.52</td>
<td>35.11</td>
</tr>
<tr>
<td></td>
<td>(230.31)</td>
<td>(126.00)</td>
<td>(110.57)</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb straw mulching 6 t/ha fb hand weeding at 40 DAS</td>
<td>13.87(192.35)</td>
<td>10.29(105.68)</td>
<td>10.14(102.71)</td>
<td>44.32</td>
</tr>
<tr>
<td>SEm±</td>
<td>0.07</td>
<td>0.04</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>0.19</td>
<td>0.11</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

DAS, Days after sowing; fb, followed by.
Biomass accumulation and nutrient addition by sesbania incorporation

Sesbania added on an average 1,400 kg/ha (on dry weight basis) biomass to soil incorporated at 45 DAS and 28.14 kg N/ha, 1.848 kg P/ha, 30.044 kg K/ha were added in the soil.

Yield attributes and yield

The yield attributes, viz. number of panicles/m², panicle length (cm), panicle weight (g), number of grains/panicle, were higher in square planting geometry as compared to seed drill sown crop (Table 2). This might be due to efficient utilization of nutrients and available resources due to lesser weed competition which increased number of panicles/m². The plants grown with wider spacing might have optimum rhizospheric area to draw nutrition and capture solar radiation. Similar findings were also reported by Sonboir et al. (2017). Number of unfilled spikelets/plant was higher in seed drill sown crop as compared to square planting. This might be due to lower resources availability, higher weed competition and higher intra and inter-plant competition.

Table 2. Effect of planting geometry, rice cultivars and weed management on yield attributes in dry direct seeded rice (average data of 2 years)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Panicles/ m²</th>
<th>Panicle length (cm)</th>
<th>Panicle weight (g)</th>
<th>No. of grains/ panicle</th>
<th>No. of unfilled spikelets/panicle</th>
<th>Test weight (g)</th>
<th>Grain yield (t/ha)</th>
<th>Straw yield (t/ha)</th>
<th>Net returns (₹/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting geometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5 cm (Seed drill sown crop)</td>
<td>294.36</td>
<td>22.95</td>
<td>3.17</td>
<td>139.25</td>
<td>23.00</td>
<td>3.89</td>
<td>35,117.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 cm × 25 cm (Square planting)</td>
<td>317.16</td>
<td>24.77</td>
<td>3.91</td>
<td>149.80</td>
<td>23.35</td>
<td>4.19</td>
<td>41,605.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM±</td>
<td>4.64</td>
<td>0.38</td>
<td>0.07</td>
<td>2.01</td>
<td>0.44</td>
<td>0.23</td>
<td>0.05</td>
<td>0.08</td>
<td>997.4</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>14.30</td>
<td>1.17</td>
<td>0.23</td>
<td>6.21</td>
<td>1.34</td>
<td>NS</td>
<td>0.15</td>
<td>0.24</td>
<td>3,073.29</td>
</tr>
<tr>
<td>Cultivar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Arize 6444’</td>
<td>317.19</td>
<td>25.15</td>
<td>3.85</td>
<td>149.47</td>
<td>23.24</td>
<td>4.24</td>
<td>42,256.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘PHB 71’</td>
<td>294.32</td>
<td>22.57</td>
<td>3.23</td>
<td>139.58</td>
<td>23.11</td>
<td>3.83</td>
<td>34,465.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM±</td>
<td>4.64</td>
<td>0.38</td>
<td>0.07</td>
<td>2.01</td>
<td>0.44</td>
<td>0.23</td>
<td>0.05</td>
<td>0.08</td>
<td>997.4</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>14.30</td>
<td>1.17</td>
<td>0.23</td>
<td>6.21</td>
<td>1.34</td>
<td>NS</td>
<td>0.15</td>
<td>0.24</td>
<td>3,073.29</td>
</tr>
<tr>
<td>Weed management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weedy</td>
<td>173.75</td>
<td>20.00</td>
<td>2.63</td>
<td>105.94</td>
<td>22.36</td>
<td>2.16</td>
<td>287.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb hand weeding at 30 DAS</td>
<td>356.03</td>
<td>26.63</td>
<td>4.34</td>
<td>162.98</td>
<td>23.01</td>
<td>4.85</td>
<td>61.9</td>
<td>57,018.9</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb Sesbania incorporated at 45 DAS</td>
<td>347.50</td>
<td>26.09</td>
<td>3.98</td>
<td>157.47</td>
<td>25.43</td>
<td>4.68</td>
<td>6.01</td>
<td>56,425.2</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb straw mulching 4 t/ha fb hand weeding at 40 DAS</td>
<td>313.84</td>
<td>22.22</td>
<td>3.19</td>
<td>145.15</td>
<td>22.96</td>
<td>4.05</td>
<td>5.35</td>
<td>31,958.60</td>
<td></td>
</tr>
<tr>
<td>Hoeing at 12 DAS fb straw mulching 6 t/ha</td>
<td>337.66</td>
<td>24.36</td>
<td>3.57</td>
<td>151.10</td>
<td>27.22</td>
<td>4.46</td>
<td>5.72</td>
<td>35,125.1</td>
<td></td>
</tr>
<tr>
<td>SEM±</td>
<td>4.29</td>
<td>0.39</td>
<td>0.09</td>
<td>1.85</td>
<td>0.48</td>
<td>0.26</td>
<td>0.04</td>
<td>0.09</td>
<td>837.83</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>12.11</td>
<td>1.10</td>
<td>0.24</td>
<td>5.22</td>
<td>1.36</td>
<td>NS</td>
<td>0.12</td>
<td>0.25</td>
<td>2,367.04</td>
</tr>
</tbody>
</table>

DAS, Days after sowing; fb followed by; Price: Rice grain, 1,550 ₹/q (Department of Agriculture and cooperation, Directorate of Economics and Statistics); rice straw, 300 ₹/q; NS, non-significant.
spikelets/plant was higher in weedy check during both the years.

Grain and straw yields
The grain and straw yields were significantly higher in square planting than seed drill sown crop (Table 2). The higher yield in wider plant spacing might be due to lower weed competition and higher number of effective tillers/m² and number of filled grains/panicle. Square planting had uniform plant population with precise cropping geometry that helped in better tillering and more number of filled grains/panicle. Grain and straw yields were significantly higher in ‘Arize 6444’ cultivar than ‘PHB 71’. This might be due to better performance of growth and yield attributing characters of ‘Arize 6444’ and was found more competitive against weeds than ‘PHB 71’. Similar findings were also reported by Raj et al. (2017).

Among weed management treatments 1 hoeing at 12 DAS fb hand weeding at 30 DAS recorded the maximum grain and straw yields, significantly superior to rest of the weed management treatments except 1 hoeing at 12 DAS fb Sesbania incorporated at 45 DAS during both the years. Hoeing followed by hand weeding at critical crop growth period might have increased performance of yield attributes and yield of rice crop. Sesbania incorporation resulted in addition of 28.14 kg N/ha to soil. Concurrent growing of Sesbania also smothered weed growth due to shading effect and decreased transmission of light through canopy (Baumann et al., 2000). Lower weed competition and higher values of yield attributes were recorded in these weed management treatments which ultimately increased grain and straw yields.

Interaction effect on grain yield
Interaction effect (Table 3) of planting geometry and weed management treatments revealed that square planting and 1 hoeing at 12 DAS fb hand weeding at 30 DAS recorded the maximum grain yield which was significantly superior to rest of the treatment combinations except seed drill sown crop and 1 hoeing at 12 DAS fb hand weeding at 30 DAS, and square planting and 1 hoeing at 12 DAS fb Sesbania incorporated at 45 DAS during both the years. Optimum planting geometry helped to capture more space by crop and maximized crop growth by availability of all resources and lower weed competition. Sesbania coculture and incorporation not only reduced weed growth but also increased yield by supplying nutrient specially nitrogen to crop plant. Similar findings were also reported by Pathak et al. (2011).

Interaction effect (Table 3) of cultivars and non-chemical weed management treatments revealed that the maximum grain yield was recorded with rice cultivar ‘Arize 6444’ and 1 hoeing at 12 DAS fb hand weeding at 30 DAS interactions, and remained at par with ‘Arize 6444’ and 1 hoeing at 12 DAS fb Sesbania incorporated at 45 DAS. This might be due to mechanical weeding at critical growth period followed by Sesbania incorporation at 45 DAS reduced weed growth and increased rapid canopy development of ‘Arize 6444’ which increased grain yield in respective treatment combinations.

Net return
Square planting recorded maximum net return of 41,605.5 (Table 2). In case of cultivars, ‘Arize 6444’ recorded maximum net returns. This could mainly be owing to lesser cost of cultivation, and higher grain and straw yields under this treatment which led to maximum net returns. Higher net returns was obtained with hoeing at 12 DAS fb hand weeding at 30 DAS were statistically at par with that obtained with hoeing at 12 DAS fb Sesbania incorporated at 45 DAS, i.e. 56,425.2. The higher net return under this treatment was mainly owing to reduced weed

| Table 3. Interaction effect of planting geometry and cultivar with non-chemical weed-management on grain yield of dry direct-seeded rice |
|-----------------|------------------|------------------|------------------|
| Treatment/Weed management | Planting geometry | Cultivars |
| | S, 18.5 cm S (Seed drill sown crop) | S, 25 cm × 25 cm S (Square planting) | V, ‘Arize 6444’ | V, ‘PHB 71’ |
| W, Weedy | 1.84 | 2.47 | 2.27 | 2.05 |
| W, Hoeing at 12 DAS fb hand-weeding at 30 DAS | 4.74 | 4.95 | 5.13 | 4.56 |
| W, Hoeing at 12 DAS fb Sesbania incorporated at 45 DAS | 4.59 | 4.78 | 4.96 | 4.40 |
| W, Hoeing at 12 DAS fb straw mulching @ 4 t/ha fb hand-weeding at 40 DAS | 3.94 | 4.16 | 4.15 | 3.95 |
| W, Hoeing at 12 DAS fb straw mulching @ 6 t/ha | 4.35 | 4.57 | 4.71 | 4.20 |

SEm± CD (P=0.05) SEm± CD (P=0.05)
W at same levels of S/V 0.059 0.167 0.059 0.167
S/V at same or different levels of W 0.073 0.215 0.073 0.215
management cost and more grain yield.

It can be concluded that rice cultivar ‘Arize 6444’, square planting and either weed management by 1 hoeing at 12 DAS fb hand weeding at 30 DAS or 1 hoeing at 12 DAS fb Sesbania co-culture and incorporated at 45 DAS may be recommended to obtain effective and economical weed control, higher yield and net returns in dry direct seeded condition for Varanasi region of Uttar Pradesh.

REFERENCES