Effect of row ratio of fodder sorghum (Sorghum bicolor) in pigeonpea (Cajanus cajan) intercropping system on productivity, competition functions and economics under rainfed conditions of north India

S.S. VERMA, Y. P. JOSHI and S.C. SAXENA

Department of Agronomy, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145

Received: February 2004

ABSTRACT

An experiment was conducted during the rainy season of 3 consecutive years from 2000 to 2002 at the Livestock Research Centre of the Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, to study the effect of row ratio of fodder sorghum [Sorghum bicolor (L.) Moench] in pigeonpea [Cajanus cajan (L.) Millsp.] intercropping systems. Intercropping of fodder sorghum in narrow row space of pigeonpea (75 cm) with a row ratio of 1:2 recorded the highest pigeonpea-equivalent yield (34.36 q/ha), net returns (Rs 30,179/ha), benefit : cost ratio (4.96), aggressivity index (0.533), area-time equivalent ratio (1.21), land-equivalent ratio (1.583) and relative crowding co-efficient (15.07). Thus, the intercropping system may be adopted for higher net return, benefit: cost ratio and pigeonpea-equivalent yield.

Key words: Fodder sorghum-pigeonpea intercropping, Aggressivity index, Land-equivalent ratio, Area-time equivalent ratio, Benefit : cost ratio, Relative crowding co-efficient

An intercropping of fodder sorghum with pigeonpea produces better fodder in a short period without any adverse effect on growth, development and productivity of sole crop of pigeonpea and it also helps in soil and water conservation with increasing soil fertility and benefit : cost ratio. The beneficial effects of a suitable row ratio in cereal-legume intercropping system may be assessed through various competition functions (Rafey and Prasad, 1996). Therefore, a field experiment was conducted to study the effect of row ratio of fodder sorghum in pigeonpea intercropping system on productivity, competition functions and economics under rainfed conditions of north India.

MATERIALS AND METHODS

The experiment was conducted during the rainy season of 3 consecutive years from 2000 to 2002 at the Livestock Research Centre of the Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, in randomized block design with 3 replications. Eight treatments consisted of 2 row spacing of pigeonpea, viz. 75 and 100 cm, and 3 row ratios of fodder sorghum, viz 1:3, 1:2 and 1:1 (Table 1). The soil of experimental plot was silty clay loam and contained 10 % sand, 60.2% silt and 29.8% clay with a bulk density of 1.33 g/cm³. The soil was high in organic carbon (1.14%), 0.09% total nitrogen, medium in available phosphorus (25.0 kg /ha) and available potassium (345 kg /ha) with neutral in reaction (7.1 pH) having cation-exchange capacity 3.5 meq/100 g soil.

The sorghum ‘Pant chari 5’ and pigeonpea ‘UPAS 120’ were sown in the rainy season on 26, 28 and 29 June in 2000, 2001 and 2002, respectively, with recommended seed rate of fodder sorghum, pigeonpea as a sole crop and intercropping system. The sole crop of pigeonpea and intercropping with fodder sorghum was fertilized with a basal application of fertilizer dose, i.e. 20, 60 and 40 kg and 50, 60 and 40 kg NPK/ha, respectively. While fodder sorghum was grown with recommended dose of fertilizer, i.e. 100, 50, 40 kg, N, P, K/ha. Fresh herbage yield was recorded at harvesting time with 50% flowering stage. The growth and yield attributing characters of pigeonpea such as plant height, branches/plant, pods/plant, grains/pod and test weight, were recorded at physiological maturity and the crop was harvested at maturity. The productivity and economics were calculated on the basis of prevailing market prices. Different competition indices were calculated (Willey, 1979) as per the standard procedures.

RESULTS AND DISCUSSION

Yield

Higher pigeonpea-equivalent yield was obtained on all the intercropping systems over sole crop of pigeonpea and...
fodder sorghum (Table 1). However, significantly highest pigeonpea-equivalent yield (34.36 q/ha) was recorded in narrow row space pigeonpea (75 cm) with fodder sorghum in a row ratio of 1:2 followed by treatments T4, T5, T6, and T9 in intercropping system. Treatment T7 being at par with T8 also showed significant superiority to T9 and T1 in pigeonpea-equivalent yield, while T7 and T8 were at par with each other. Balyan and Seth (1991) also reported higher productivity in intercropped system than monocropping. This might be owing to the efficient use of space, light penetration and more efficient use of nutrients. These resources have positive effect on growth and yield of both crops in foresaid treatment (T7).

Seed yield of pigeonpea was higher in wide row spaced (100 cm) than narrow spaced pigeonpea (75 cm) in both as sole and intercropping systems. This might be owing to more growth and yield attributes which positively affected with available resources and optimum plant competition. Almost similar finding was reported by the Salunkhe et al. (1990).

Aggressivity index

Intercropping of fodder sorghum in row space of pigeonpea with a row ratio 1:2 recorded higher aggressivity index (0.553) than other intercropping systems followed by T3, T4, T5 and T6 (Table 2). The increase in number of rows of fodder sorghum and pigeonpea rows in between increased the competition between sorghum plants and thereby resulted in the increase in dominance power of pigeonpea. Abbas et al. (1995) recorded almost similar finding in maize with legumes intercropping system.

Area-time equivalent ratio (ATER)

All the intercropping systems recorded area-time equivalent ratio (ATER) value more than 1 indicating better land-utilization efficiency than their sole crops. Fodder sorghum + pigeonpea intercropping with a row ratio of 1:2 had maximum ATER values (1.21), followed by T3, T4, T5 and T6 treatments (Table 2). This showed that it had better land-utilization efficiency under these treatments, which gave higher productivity ranging from 15.5 to 27.9% than sole cropping. Similar finding was reported by Patra et al. (1990).

Land-equivalent ratio

Intercropping of fodder sorghum with pigeonpea resulted in land-equivalent ratio (LER) more than 1 as compared to sole cropping of each crop. Fodder sorghum in narrow row space pigeonpea with a row ratio 1:2 (T7) recorded the highest LER (1.583), followed by treatments T3, T4, T5 and T6 (Table 2). Among intercropping systems, the difference in LER was not more 21.4% and it varies from 17.6 to 21.4%. This might be due to combined effect of natural and input resources, which utilized efficiently by component crops, having different rooting pattern, canopy distribution and nutrient requirement in the cropping system. The results were in accordance with the findings of Patra et al. (1990).

Relative crowding coefficient

In all intercropping systems relative crowding coefficient (RCC) value recorded more than 1 showing better land utilization with higher plant population than their sole crops (Table 2). Intercropping of fodder sorghum with pigeonpea in row ratio 1:2 (T7) and 1:1 (T8) had higher relative crowding coefficient values (15.07 and 9.19) than rest of intercropping system respectively. However, treatment T8 showed superiority to other treatments. Narrow

Table 1. Yield, total pigeonpea-equivalent yield and yield attributes under different treatment in pigeonpea-fodder sorghum intercropping system (mean data of 3 years)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Pigeonpea grain yield (q/ha)</th>
<th>Sorghum yield (q/ha)</th>
<th>Pigeonpea equivalent yield (q/ha)</th>
<th>Total pigeonpea equivalent yield (q/ha)</th>
<th>Sorghum plant height (cm)</th>
<th>Pigeonpea plant height (cm)</th>
<th>Plant Branches/plant</th>
<th>Pods/plant</th>
<th>Test weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, Sorghum at 25 cm row spacing</td>
<td>21.86</td>
<td>637.6</td>
<td>103.0</td>
<td>12.50</td>
<td>34.36</td>
<td>248</td>
<td>214</td>
<td>16.4</td>
<td>53.2</td>
</tr>
<tr>
<td>T2, Pigeonpea at 75 cm row spacing</td>
<td>22.33</td>
<td>627.5</td>
<td>76.3</td>
<td>9.10</td>
<td>31.43</td>
<td>252</td>
<td>212</td>
<td>17.6</td>
<td>57.3</td>
</tr>
<tr>
<td>T3, Pigeonpea at 100 cm row spacing</td>
<td>17.77</td>
<td>418.7</td>
<td>117.9</td>
<td>14.23</td>
<td>32.00</td>
<td>246</td>
<td>211</td>
<td>16.4</td>
<td>45.6</td>
</tr>
<tr>
<td>T4, T5 + 2 rows of sorghum (1:2)</td>
<td>19.89</td>
<td>345.3</td>
<td>98.3</td>
<td>11.74</td>
<td>31.63</td>
<td>249</td>
<td>218</td>
<td>19.1</td>
<td>56.8</td>
</tr>
<tr>
<td>T6, T7 + 3 rows of sorghum (1:3)</td>
<td>24.18</td>
<td>247.2</td>
<td>71.1</td>
<td>8.40</td>
<td>32.58</td>
<td>250</td>
<td>220</td>
<td>20.4</td>
<td>61.1</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>0.73</td>
<td>1.1</td>
<td>1.0</td>
<td>2.2</td>
<td>2.8</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
row space pigeonpea (75 cm) treatments showed better performance than wide row space pigeonpea (100 cm), as the higher plant population and better land-utilization efficiency with component crops recorded higher productivity of component crop. This might be owing to higher yield of component crops. Patra et al. (1990) also observed similar results in maize + pigeonpea intercropping system.

Net returns

All intercropping systems had higher net return than sole crop of fodder sorghum and pigeonpea. Among intercropping systems, fodder sorghum in narrow row space pigeonpea with a row ratio 1:2 (T₄) gave significantly higher net return (Rs 30,179/ha) compared to the other treatments followed by T₅, while minimum net return was obtained with sole crops of fodder sorghum and pigeonpea (Table 2). Higher net profit in a foresaid intercropping treatment might be owing to higher pigeonpea equivalent (Table 1) and higher selling price of pigeonpea (Table 2). Similar trend was also observed in maize + legume intercropping by Sharma (1994) and Pandita et al. (2000).

Benefit : cost ratio

In all the treatments, intercropping system had significantly higher benefit : cost ratio than other sole treatments except sole crop of pigeonpea at wide row space (T₃) which was at par with T₄ and T₅ with respect of benefit : cost ratio (Table 2). However, fodder sorghum in narrow row space pigeonpea (75 cm) with a row ratio of 1:2 (T₄) gave significantly higher benefit : cost ratio (4.96) than other treatments and remained at par with T₆ (4.91), followed by T₅ (4.84). However, minimum benefit : cost ratio (2.42) was obtained with sole cropping of sorghum (T₆). This might be due to higher pigeonpea-equivalent yield (Table 1) and selling price of pigeonpea (Table 2). These findings are in conformity with the findings of Sharma (1994) and Singh and Balyan (2000).

Thus, it may be concluded that intercropping of fodder sorghum in narrow row space pigeonpea (75 cm) with a row ratio of 1:2 was found most suitable and profitable intercropping system under rainfed condition of north India.

REFERENCES

