Indian Journal of Agronomy 50 (1) : 31–34 (March 2005)

Biological and economical feasibility of chickpea (Cicer arietinum) + Indian mustard (Brassica juncea) cropping systems under varying levels of phosphorus

H.N.TRIPATHI, SUBASH CHAND AND A.K. TRIPATHI

Department of Agronomy, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh 208 002

Received : December 2003

ABSTRACT

A study was undertaken by introducing Indian mustard [Brassica juncea (L.) Czernj. & Cosson] as an intercrop with chickpea (Cicer arietinum L.) in 2 row proportions, viz. 6:2 and 8:2, fertilized with 0, 30, 60 and 90 kg P$_3$O$_5$/ha during the winter season of 1998–99 and 1999–2000, to assess the biological and economical feasibility of chickpea + Indian mustard in association under varying levels of phosphorus. Intercropping systems reduced the values of yield attributes and seed yield of chickpea, while reverse was true in case of Indian mustard than sole cropping of chickpea and Indian mustard respectively. Both intercropping systems recorded significantly higher chickpea-equivalent yield, net monetary returns and benefit : cost ratio than its sole cropping. Among the intercropping systems, 8:2 row ratio proved most efficient and profitable system resulting in maximum chickpea-equivalent yield (24.31 q/ha), net monetary returns (Rs 17,101/ha), benefit : cost ratio (2:11) and land-equivalent ratio (1.19). Both chickpea and Indian mustard in sole and intercropping systems responded favourably up to 60 kg P$_3$O$_5$/ha only for yield attributes, yield and net monetary returns over no phosphorus and 30 kg P$_3$O$_5$/ha. The interaction effects of the factors showed that mean chickpea equivalents responded to P application up to 60 kg/ha in sole stands and up to 90 kg P$_3$O$_5$/ha in intercropping systems.

Key words : Intercropping, Chickpea, Indian mustard, Chickpea-equivalent yield, Economic feasibility

Intercropping may be a feasible and viable agronomic practice for stepping up the production of pulses and oilseeds from a unit of land during a cropping period. Plant population and spatial arrangement in intercropping have important effects on the balance of competition between component crops and their productivity. The greatest limitation of increase in productivity of these crops is inadequate supply of fertilizer nutrients. The nutrient mainly phosphorus contributes significantly in enhancing the yield of leguminous crops. Thus, proper application of phosphorus may increase the production and productivity of both chickpea and Indian mustard crop (Enania and Vyas, 1995). Keeping in view, an experiment was undertaken to find out possibility of increasing production of pulses and oilseeds through intercropping system in relation to spatial arrangement of crops and phosphorus fertilization.

MATERIALS AND METHODS

An experiment involving intercropping of Indian mustard with chickpea was conducted in sandy-loam soil of Kanpur, during the winter seasons of 1998–99 and 1999–2000. The soil was slightly alkaline in reaction (pH 7.9 and 7.8), poor in organic carbon (0.40 and 0.45%), low in available N (225 and 248 kg/ha), medium in available P$_2$O$_5$ (16.1 and 14.0 kg/ha) and available K$_2$O (180 and 172 kg/ha).

Treatments consisting of 16 combinations of 4 cropping systems, viz. sole chickpea, sole Indian mustard, chickpea + Indian mustard, chickpea + Indian mustard (6:2) and chickpea + Indian mustard (8:2) row proportion and 4 P levels (0, 30, 60 and 90 kg/ha) applied to the crops were tested in randomized block design and replicated thrice. Crop varieties were "Udai" and "Basanti" for chickpea and Indian mustard respectively. Both crops were sown in the last week of October in the 2 years at row distance of 45 cm. The seed rate was 100 and 5 kg/ha for respective crops. All sole crops were fertilized with recommended dose of 20 kg N/ha for chickpea and 120 kg N/ha for Indian mustard. In case of intercropping, the fertilizer dose was adjusted for proportionate area of the crops. Phosphorus was given in basal as per treatment. Full dose of potassium was applied chickpea as basal dressing in furrows before sowing. In Indian mustard, nitrogen was applied in 2 equal splits, i.e. 50% basal and 50% top-dressed after first irrigation. The crop-wise harvesting was done at maturity. Chickpea and Indian mustard were harvested on 30 March 1999 and 20 March 1999 during the first year and 2 April 2000 and 24 March 2000 during
the second year respectively. Rainfall received during crop period of 1998–99 and 1999–2000 was 18.2 and 11.8 mm respectively. Economics was worked out on the existing market price. Chickpea-equivalent yield was calculated on the basis of support prices of both the crops on pooled basis. The pooled data were computed for different biological indices, viz. land-equivalent ratio and product of relative crowding coefficient, as described by Willey (1979). It was further calculated for competition index as proposed by Donald (1963).

RESULTS AND DISCUSSION

Effect of intercropping

Chickpea: The yield attributes (pods/plant, seed/pod and 1,000-seed weight) and seed yield of chickpea showed significant variation due to planting patterns (Table 1). Higher values of yield attributes were noticed with sole chickpea. This might be due to the fact that Indian mustard endowed with deep-rooted system and vigorous plant growth, offered more competition both under and above ground for growth resources. Secondly, better root growth in sole chickpea facilitated more area for nodule formation, resulting higher yield attributes. Among the intercropping systems, 6:2 row ratio had relatively greater adverse effect on yield attributes of chickpea due to vigorous growth and adverse effect of Indian mustard in association.

The seed yield of chickpea was significantly higher in sole cropping than that recorded in intercropping with Indian mustard under both the planting patterns due to absence of inter-space competition and limited disturbance of habitat. Production of seed yield of intercropped chickpea was reduced by 35.9% and 28.3% under 6:2 and 8:2 row ratio over sole stand of chickpea respectively. Among intercropping treatments, 8:2 row ratio registered significantly higher seed yield of chickpea owing to more plants/unit area and lesser inter-space competition posed by Indian mustard with lesser plant population and shading effect. The results conform the findings of Sarkar et al. (2000).

Indian mustard: All the yield-attributing characters of Indian mustard were higher in intercropped stands with chickpea over its sole cropping (Table 1). Among intercropping patterns, chickpea + Indian mustard grown under 8:2 row ratio had higher values of yield attributes in Indian mustard owing to lesser competition for nutrients, light, space and moisture, and took more advantage of solar radiation. The seed yield of Indian mustard under intercropping system decreased significantly compared to its sole stands might be due to higher plant population (100%) compared to 6:2 and 8:2 planting patterns contributed only 25% and 20% plant stand respectively. Among

| Table 1: Yield attributes, seed yield, chickpea-equivalent yield, biological and economical parameters of chickpea + Indian mustard intercropping systems as influenced by varying phosphorous doses (mean of 2 years pooled data) |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Treatment | Crop | Seed yield | Chickpea | Indian mustard |
| | Pods/plant | (g/plant) | (g/plant) | (g/plant) | (g/plant) | (g/plant) | (g/plant) | (g/plant) |
| Chickpea + | 49.7 | 126.7 | 4.2 | 10.9 | 4.8 | 11.6 | 119.6 | 1.4 |
| Chickpea | 4.8 | 23.2 | 4.2 | 11.6 | 1.4 | 22.2 | 118.2 | 4.8 |
| Chickpea + | 6.0 | 27.3 | 4.2 | 12.1 | 1.7 | 24.2 | 123.3 | 5.0 |
| Indian mustard | 6.0 | 27.3 | 4.2 | 12.1 | 1.7 | 24.2 | 123.3 | 5.0 |

...
intercropping treatments, 8:2 row ratio recorded significantly higher seed yield of Indian mustard over 6:2 row proportion might be owing to improvement in yield attributes which also compensated the losses caused by reduction in plant stand (Thakur et al., 2000).

Effect of phosphorus application

Chickpea: The yield attributes (pods/plant, seeds/pod and 1,000-seed weight) and seed yield recorded markedly up to 60 kg P₂O₅/ha only (Table 1). The improvement in yield components might have been owing to better proliferation of roots resulting increased nodulation due to P availability and phosphorus fertilization may be accounted for favourable influence of P nutrition on promotion of source capacity in legumes (Sarkar et al., 1995). The increase in seed yield with 60 kg P₂O₅/ha over the control and 30 kg P₂O₅/ha was 42.9 and 9.9% respectively.

Indian mustard: The yield attributes of Indian mustard (pods/plant and seeds/pod) showed improvement up to 60 kg P₂O₅/ha only, whereas 1,000-seed weight significantly increased up to 90 kg P₂O₅/ha (Table 1). The improvement in yield attributes by P application could be attributed to better development of plant growth and nutrient translocation favourably affecting the rate of photosynthesis and accumulation of photosynthates. The seed yield markedly increased up to 60 kg P₂O₅/ha only as a result of improved growth, translocation of more photosynthates towards sink and consequent increase in yield-attributing characters. The results are in conformity with the findings of Bhari et al. (2000).

Total productivity

Both the intercropping systems showed superiority to sole cropping in total productivity, as evident by chickpea-equivalent yield (Table 1). The higher equivalent yield showed higher biomass production and efficient use of available growth resources under intercropping than sole cropping. However, among the cropping systems, intercropping system involving Indian mustard raised in 8:2 row ratio recorded the maximum chickpea-equivalent yield, providing significantly higher yield 13.1% and 29.7% over sole chickpea and Indian mustard respectively. Sole Indian mustard recorded the lowest chickpea-equivalent yield. The results are in conformity with those of Prasad et al. (2000). Chickpea-equivalent yield exhibited an increasing trend with increasing levels of P significantly up to 90 kg/ha, which gave 34.3, 9.2 and 1.1% higher over the control, 30 and 60 kg P₂O₅/ha respectively. It seems to be associated with increased yield of chickpea and Indian mustard both at higher level P.

Biological feasibility

The mean land-equivalent ratio (LER) and relative crowding coefficient (RCC) in 2 years ranged from 1.10 to 1.19 and 2.30, respectively, indicating biological sustainability of intercropping over sole cropping. Chickpea + Indian mustard (8:2) intercropping system recorded the maximum LER of 1.19 and RCC of 2.30 indicating that intercropping though reduced the yield of chickpea by 10.4%, this system as a whole was more productive with yield advantage of 19%. This indicates that intercropping was more efficient in utilizing natural resources than sole cropping of component crops. Competition index (CI) was lower in 8:2 row ratio than 6:2 row ratio system indicating that chickpea + Indian mustard grown in 8:2 row ratio system was found more efficient than chickpea + Indian mustard (6:2) system. Increasing doses of P enhanced LER and RCC up to highest dose of 90 kg P₂O₅/ha with respective value of 1.17 and 2.15, whereas competition index influenced up to 60 kg P₂O₅/ha. It indicates that 90 kg P₂O₅/ha utilized land more efficiently but it faced more crowd and competition among component crops of the system.

Economic viability

The economic feasibility in terms of net monetary return showed that both the intercropping systems gave higher net returns than sole cropping of component crops (Table 1), indicating intercropping a productive and remunerative system of cultivation. However, among the cropping systems, intercropping of chickpea + Indian mustard in 8:2 row ratio fetched higher net monetary return and benefit : cost ratio. Among the P levels, there was steady increase in net returns with increase in P level from 0 kg to 60 kg/ha. There was, however, a marginal reduction in net returns (Rs 311) at highest level of 90 kg P₂O₅/ha over 60 kg P₂O₅/ha and benefit : cost ratio also followed the similar trend with highest value 2.05 at 60 kg/ha P.

Response function

Further, owing to increased availability of P in soil, response of component crops under different cropping systems to phosphorus on seed yield of chickpea and Indian mustard was worked out by fitting response equation and following estimated equations were obtained from seed yield data pooled over 2 years.

Chickpea
- Sole chickpea: \(Y = 17.53 + 0.1623 P - 0.000106 P^2 \)
- Chickpea + Indian mustard (6:2): \(Y = 10.55 + 0.1371 P - 0.00092 P^2 \)
- Chickpea + Indian mustard (8:2): \(Y = 11.25 + 0.1743 P - 0.00117 P^2 \)

Indian mustard
- Sole mustard: \(Y = 17.39 + 0.1082 P - 0.00075 P^2 \)
- Chickpea + Indian mustard (6:2): \(Y = 8.28 + 0.0397 P - 0.00024 P^2 \)
- Chickpea + Indian mustard (8:2): \(Y = 8.39 + 0.047 P - 0.00028 P^2 \)

These equations revealed that response of component crops under various cropping systems to P application
was quadratic, indicating operation of the law of diminishing return. The economic dose for maximum seed yield and yield at this dose of both component crops were computed for P application indicated that 23.7 kg, 15.62 and 17.7 kg q/ha seed yield of chickpea and Indian mustard were predicted by applying 71.0, 68.0 and 69.0 kg, and 64.0, 56.0 and 61.0 kg P$_2$O$_5$/ha under sole and 2 planting patterns, viz. 6:2 and 8:2 row ratios, with 100, 25 and 20% plant population respectively. The maximum response/kg P$_2$O$_5$ was 11.64 and 14.94 kg at their corresponding P levels under chickpea + Indian mustard (8:2) intercropping system.

Interaction effects

The interaction effect of cropping system and P levels had significant effect on seed yield of intercropped Indian mustard and chickpea-equivalent yield (Table 2). Sole Indian mustard and intercropped Indian mustard grown in 8:2 row ratio showed significant increase in Indian mustard seed yield with increasing levels of phosphorus up to 60 kg/ha, whereas Indian mustard grown in 6:2 row proportion showed no significant variation in seed yield beyond 30 kg P$_2$O$_5$/ha.

Sole stands of chickpea and Indian mustard registered significantly higher mean chickpea-equivalent yield up to 60 kg P$_2$O$_5$/ha. However, when 90 kg P$_2$O$_5$/ha was applied with chickpea + Indian mustard intercropping system resulted in significantly highest chickpea-equivalent yield. Chickpea + Indian mustard (8:2) system gave significantly maximum chickpea-equivalent yield at application of 90 kg P$_2$O$_5$/ha under combined effect.

Table 2. Seed yield of Indian mustard and chickpea-equivalent yield under different cropping systems as influenced by phosphorus levels (mean of 2 years pooled data)

<table>
<thead>
<tr>
<th>Cropping system</th>
<th>P (kg/ha) (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CS)</td>
<td>0 30 60 90</td>
</tr>
</tbody>
</table>

Seed yield of Indian mustard (q/ha)

SOLE INDIAN MUSTARD	17.75 20.50 21.45 21.50
CHICKPEA + INDIAN MUSTARD (6:2)	8.25 9.30 9.75 9.95
CHICKPEA + INDIAN MUSTARD (8:2)	8.40 9.50 10.25 10.35
CD (P=0.05)	0.53

Chickpea-equivalent yield (q/ha)

CHICKPEA-EQUIVALENT YIELD	17.50 21.50 23.40 23.60
SOLE CHICKPEA	16.38 18.92 19.80 19.85
SOLE INDIAN MUSTARD	18.11 22.58 24.30 24.68
CHICKPEA + INDIAN MUSTARD (6:2)	18.95 24.27 26.81 27.20
CHICKPEA + INDIAN MUSTARD (8:2)	18.95 24.27 26.81 27.20
CD (P=0.05)	0.29

REFERENCES

