Bio-efficacy and economics of herbicide mixtures in zero-till maize (Zea mays) grown after rice (Oryza sativa)

M. MALLA REDDY¹, B. PADMAJA², G. VEERANNA³ AND D. VISHNU VARDHAN REDDY⁴

Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Warangal, Andhra Pradesh 506 007

Received : January 2012; Revised accepted : July 2012

ABSTRACT

A field experiment was conducted at Warangal, Andhra Pradesh during 2008-09 and 2009-10 to study the effect of pre-emergence application of herbicides viz. atrazine, glyphosate, paraquat and 2, 4-D sodium salt in zero-till maize (Zea mays L.) grown after rice (Oryza sativa L.) as sole and tank mixtures. The lowest density (no/m²) and dry weight (g/m²) of grasses (1.0 and 1.0, respectively), sedges (9.0 and 2.0, respectively) and broad-leaved weeds (1.0 and 0.5, respectively) were observed with the tank mix application of atrazine + glyphosate (0.75 + 0.8 kg/ha) recorded at 30 days after sowing. It was at par with atrazine + paraquat (0.75 + 0.75 kg/ha). The weed control efficiency was high with atrazine + glyphosate (93%) with the lowest weed persistence index (0.003) followed by atrazine + paraquat (84% and 0.021, respectively). Among the herbicides applied alone, glyphosate (1.6 kg/ha) was found to be superior to atrazine (1.5 kg/ha) and paraquat (1.5 kg/ha) for density, dry weight of weeds and weed-control efficiency. The grain yield obtained with tank mix application of atrazine + glyphosate (5.25 t/ha) was 170 and 70% more over weedy check and sole atrazine, respectively. Among all the herbicides and mixtures, atrazine + glyphosate gave the maximum net returns (₹29,350/ha) and benefit : cost ratio (1.71) followed by atrazine + paraquat due to the broad-spectrum control of weeds.

Key words : Bio-efficacy, Herbicide, Rice-fallows, Tank mixtures, Weed control efficiency, Zero tillage

Maize is an important and versatile cereal grown over diverse environment and geographical ranges for human food, feed and fodder for livestock and raw material for industries. Of late, its cultivation has gained popularity under zero tillage in rice fallows in Andhra Pradesh. Adoption of no-till cultivation helps in timeliness of sowing each crop in rotation, and hence leads to increase in productivity (Mohammad, 2009). Zero tillage has certain other advantages like improved soil conditions due to decomposition of crop residue in situ, increase in infiltration rate and reduced cost of field preparation (Singh et al., 2001). Tillage also influences the soil seed bank and growth of weeds (Sarma and Goutam, 2010). Hence, the success of zero tillage is largely dependent on solving the key issue of weed management with economic crop yields (Hari Om et al., 2006).

Maize suffers from severe weed competition and depending upon the intensity, nature, stages and duration of weed infestation, the losses in yield vary from 28-100% (Patel et al., 2006). Manual weeding is often difficult due to inadequate supply of labour in time, higher cost and non-workable condition of the field. In such situations, use of herbicides is the obvious choice. When grown in rice - falls under no-till condition, certain weeds already exist at the time of sowing, and offer competition to the maize crop. Apart from this, regrowth from rice stubbles also suppresses the maize growth. Atrazine has been found to be the most effective pre-emergence herbicide and is widely used in maize (Chopra and Angiras, 2008). Being a pre-emergence herbicide it cannot kill already emerged weeds and arrest the regrowth of rice stubbles. To manage this complex and dynamic weed flora in maize grown after rice, it is essential to evaluate the tank mixtures of pre- and post-emergence herbicides to have a broad-spectrum weed control programme. Hence, the present investigation was carried to find out the effect of different herbicides applied singly or in their tank mixtures on weed growth and productivity of maize in rice fallows sown under zero tillage.

MATERIALS AND METHODS

A field experiment was conducted at Regional Agricultural Research Station, Warangal (18°00' 53.2" N Latitude,
RESULTS AND DISCUSSION

Weed density and dry weight

Dominant weed flora of the experimental site was: *Echinocloa colona* (L.) Link (13 %), *Dinebra retroflexa* (Vahl) Panzer (11 %), *Leptochloa chinensis* (L.) Nees (7 %) among grasses; *Cyperus rotundus* L. (8 %) among sedges; and *Chrozophora rotterli* (Geisel) A. Juss. Ex Spreng. (11 %), *Trinathema portulocastrum* L. (9 %), *Didera arvensis* (9 %), *Merrinia emerginata* (Burm.F.) Hall. F. (12 %), *Phyllanthus niruri* (3 %) and *Euphorbia hirta* L. (9 %) among broad leaved weeds. Among the already emerged weeds present at the time of sowing of the maize crop; *Chrozophora rottleri* (Geisel) A. Juss. Ex Spreng. followed by *Dinebra retroflexa* (Vahl) Panzer dominated.

Highest density and dry weight of grasses, sedges and broad leaved weeds were found in weedy check (Table 1). All the weed control treatments except the combination of atrazine and 2, 4-D resulted in the significant reduction of the density of grasses recorded at 30 DAS. Tank mix application of atrazine + glyphosate caused the maximum reduction in the grasses, and it was at par with atrazine + paraquat mixture. The density of sedges was also lowered significantly by the sole application of herbicides as well as their tank mixtures except the atrazine during 2008-09. Lowest count of sedges was observed with the combined application of atrazine + glyphosate during both the years and it was at par with atrazine + paraquat as well as atrazine + 2, 4-D sodium salt. It was significantly lowered by the tank mixture of glyphosate or paraquat or 2, 4-D sodium salt over the application of atrazine alone. The population of broad leaved weeds recorded at 30 DAS was also significantly reduced by mixing glyphosate or paraquat or 2, 4-D sodium salt with atrazine compared to its sole application. When applied alone, glyphosate was found to record the least number of broad leaved weeds compared to paraquat and atrazine.

The effect of the weed control treatments on the dry weight of grasses was not significant during 2008-09 (Table 1), while the tank mixed application of glyphosate or paraquat or 2, 4-D sodium salt along with atrazine was found to effectively reduce the dry weight of grasses compared to atrazine applied alone during 2009-10. Among the three herbicides applied alone, application of glyphosate registered the lowest dry matter of sedges. It was also significantly reduced by the combined application of atrazine with glyphosate or paraquat or 2, 4-D sodium salt over the alone application of the atrazine. Similarly, the tank mix application of atrazine + glyphosate led to the lowest dry weight of broad leaved weeds which was followed by the combination of atrazine + paraquat and
atrazine + 2, 4-D sodium salt and they were at par with each other. Alone application of glyphosate or atrazine or paraquat was found to be at par with each other but was ineffective compared to the application of mixtures. Weed control efficiency and weed persistence index

Among all the weed management practices, the weed-control efficiency (%) recorded at 30 DAS was higher with atrazine + glyphosate (93) followed by atrazine + paraquat (84). The efficiency of the tank mixed application of glyphosate or paraquat along with atrazine substantially increased over the alone application of atrazine (Table 2).

Weed persistence index (WPI) recorded with atrazine + glyphosate was the lowest during both the years of study (Table 2), followed by atrazine + paraquat. Among the three herbicides studied alone, glyphosate registered maximum WCE and minimum WPI compared to atrazine or paraquat.

Yield attributes and yield

All the herbicides alone or as tank mixtures recorded significantly higher values of cob length, grains per cob and 100-grain weight over weedy check except the sole atrazine (Table 2). The tank mixture of atrazine + glyphosate registered 74% more grains per cob than weedy check, which was at par with atrazine + paraquat. Higher yields of these yield parameters could be attributed to low competition stress and clean cultivation. Among the three herbicides applied alone; glyphosate was found to be superior to atrazine in terms of cob length, number of grains per cob and 100-grain weight, which was due to broader spectrum control of weeds (Table 2). It may be due to higher weed control efficiency, which provided a favourable environment for growth and development of the crop. The grain yield plateaued with the continued growth of the crop, and therefore it was lower than the sole application of atrazine + paraquat (0.75 kg/ha) and atrazine + glyphosate (0.75 kg/ha + 0.8 kg/ha) (Table 2).

Weed control efficiency and yield persistence index

Weed control efficiency (%) recorded at 30 DAS was higher with atrazine + glyphosate (93). The efficiency of the tank mixed application of glyphosate + paraquat (94) followed by atrazine + paraquat. Among the three herbicides studied alone; glyphosate registered higher weed control efficiency, which provided a favourable environment for growth and development of the crop, and therefore it was superior to atrazine and paraquat. Agricultural economics

All herbicides treatments recorded higher net returns and benefit-cost ratio over weedy check (Table 2). The crop yield was at par with atrazine + paraquat and atrazine + glyphosate, which was superior to all the other treatments. The highest yield was recorded with atrazine + glyphosate, which was at par with atrazine + paraquat, followed by atrazine alone and atrazine + glyphosate (0.75 kg/ha + 0.8 kg/ha) (Table 2). The net returns and benefit-cost ratio were significantly higher with atrazine + glyphosate, which was superior to atrazine + paraquat and atrazine alone (Table 2). The economic analysis showed that atrazine + glyphosate was the most profitable treatment, followed by atrazine + paraquat and atrazine alone. The benefit-cost ratio was significantly higher with atrazine + glyphosate, which was superior to atrazine + paraquat and atrazine alone (Table 2).
Table 2. Effect of herbicides and their mixtures on weed control efficiency, weed persistence index, yield attributes, yield and economics in zero till maize grown after rice (Pooled data of two years)

<table>
<thead>
<tr>
<th>Herbicide (kg/ha)</th>
<th>Weed control efficiency (%)</th>
<th>Weeds persistence index (cm)</th>
<th>Cob length (cm)</th>
<th>Grains/cob</th>
<th>1,000 grain weight (g)</th>
<th>Grain yield (t/ha)</th>
<th>Stover yield (t/ha)</th>
<th>Cost of cultivation (× 10³ ₹/ha)</th>
<th>Net returns (× 10³ ₹/ha)</th>
<th>B:C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weedy check</td>
<td>-</td>
<td>-</td>
<td>14.7</td>
<td>220</td>
<td>31.3</td>
<td>1.94</td>
<td>3.55</td>
<td>15.58</td>
<td>2.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Glyphosate (1.6)</td>
<td>64.10</td>
<td>0.106</td>
<td>15.8</td>
<td>345</td>
<td>32.6</td>
<td>4.33</td>
<td>5.94</td>
<td>17.30</td>
<td>21.17</td>
<td>1.22</td>
</tr>
<tr>
<td>Paraquat (1.5)</td>
<td>49.82</td>
<td>0.201</td>
<td>15.7</td>
<td>328</td>
<td>32.5</td>
<td>4.09</td>
<td>6.70</td>
<td>17.15</td>
<td>19.22</td>
<td>1.11</td>
</tr>
<tr>
<td>Atrazine (1.5)</td>
<td>21.82</td>
<td>0.527</td>
<td>15.1</td>
<td>312</td>
<td>31.9</td>
<td>3.06</td>
<td>4.68</td>
<td>16.78</td>
<td>11.09</td>
<td>0.64</td>
</tr>
<tr>
<td>Atrazine (0.75) + paraquat (0.75)</td>
<td>83.67</td>
<td>0.021</td>
<td>15.9</td>
<td>368</td>
<td>32.1</td>
<td>4.85</td>
<td>6.47</td>
<td>17.05</td>
<td>26.00</td>
<td>1.52</td>
</tr>
<tr>
<td>Atrazine(0.75) + glyphosate (0.8)</td>
<td>93.00</td>
<td>0.003</td>
<td>16.1</td>
<td>382</td>
<td>32.3</td>
<td>5.25</td>
<td>6.86</td>
<td>17.12</td>
<td>29.35</td>
<td>1.71</td>
</tr>
<tr>
<td>Atrazine (0.75) + 2, 4-D sodium salt (0.8)</td>
<td>56.33</td>
<td>0.109</td>
<td>15.5</td>
<td>334</td>
<td>32.4</td>
<td>3.99</td>
<td>5.61</td>
<td>16.76</td>
<td>18.78</td>
<td>1.12</td>
</tr>
<tr>
<td>SEM±</td>
<td>-</td>
<td>-</td>
<td>0.20</td>
<td>-</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>-</td>
<td>-</td>
<td>0.64</td>
<td>-</td>
<td>0.58</td>
<td>0.55</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Price (₹/kg): Grain = 8.2, Stover = 0.5
Spraying charges of herbicides/ha = ₹500

the herbicides and mixtures, atrazine + glyphosate gave the maximum net returns due to excellent control of grasses, sedges and broad leaved weeds with out any adverse effect on crop growth. Tank mixture of atrazine + paraquat was found to be the next best treatment. Lower net returns and benefit: cost ratio were recorded with sole application of the herbicides i.e., atrazine or glyphosate or paraquat due to poor control of weeds. Mixing 2, 4-D with atrazine was also found to be uneconomical with lower net returns and benefit cost ratio.

The study suggests that pre emergence application of tank mixed atrazine (0.75) + glyphosate (0.8 kg/ha) followed by atrazine (0.75) + paraquat (0.75 kg/ha) were the most remunerative and effective herbicide mixtures for controlling the complex weed flora in zero-till maize grown in rice fallows of Telangana region in Andhra Pradesh.

REFERENCES

