Response of maize (Zea mays) hybrids to varying spacing and fertility levels grown during spring season

ASHU SHARMA1, DILEEP KACHROO2, R. PUNIYA3 AND N.P. THAKUR4

Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, Jammu and Kashmir 180 009

Received : January 2015; Revised accepted : May 2017

ABSTRACT

A field experiment was conducted during the spring season of 2013 at Chatha, Jammu, to study the response of maize (Zea mays L.) hybrids to varying spacing and fertility levels. The row spacing of 60 cm resulted in significantly higher grain yield, stover yield, heat-use efficiency (HUE), heliothermal-use efficiency (HTUE) and total NPK uptake by spring maize with higher net returns and benefit: cost ratio than row spacing of 70 cm. Among the hybrids, ‘PMH 1’ exhibited significantly higher total NPK uptake of spring maize with concomitant significant increase of grain, stover yield and harvest index than ‘JH 3459’. However, the HUE and HTUE were significantly higher in ‘JH 3459’ than ‘PMH 1’. Hybrid ‘PMH 1’ also recorded higher net returns and benefit: cost ratio than ‘JH 3459’. Amongst the fertility levels, the application of N140P30.5K29.2 kg/ha resulted in the highest grain and stover yields, nutrient uptake and soil-nutrient build up, which was statistically at par with N120P26.2K25 kg/ha and significantly higher than N 80P17.5K16.7 kg/ha and N 100P21.8K20.8 kg/ha. The highest benefit: cost ratio was recorded with the application of N120P26.2K25 kg/ha followed by N140P30.6K29.2 kg/ha.

Key words: Fertility levels, Hybrid, Nutrient uptake, Row spacing, Spring maize, Yield

In the state of Jammu and Kashmir, maize has special significance because it forms the staple diet of majority of the people. The total area under maize crop in the state is about 308.62 thousand ha, having a production and productivity of 2,735 thousand quintals and 8.86 q/ha respectively (DES, 2015). In Jammu and Kashmir maize cultivation is gaining momentum in spring season because of its productivity and profitability and no disease infestation. Sowing of maize during spring season would provide an opportunity to utilize the fields vacated by potato, toria, peas for green pods and early harvested sugarcane, because comparatively warm conditions would provide good environment for growth of spring maize. Meager information for spring-sown maize in terms of production practice is available under Jammu conditions. However, the agro-climatic conditions of sub-tropical plains of Jammu division can provide an option of growing spring season maize. Therefore, it becomes imperative to identify suitable variety, spacing and its optimum fertility levels for spring season.

An experiment was conducted at Research Farm Chatha, SKUAST-Jammu, Jammu and Kashmir, during spring season of 2013 in factorial randomized block design with 3 replications. The soil clay loam, having initial pH 8.04, organic carbon (0.55 %) and available N, P and K of 220.40, 18.25 and 118 kg/ha respectively. The treatment consisted of 2 row spacings (60 cm and 70 cm), 2 varieties (‘PMH 1’ and ‘JH 3459’) and 4 fertility levels (80:17.47:16.7; 100:21.83:20.83; 120:26.20:25.00 and 140:30.57:29.17 N:P:K kg/ha). The plant spacing of 20 cm was maintained uniformly in all the treatments. The half dose of N and full dose of P and K was applied basal as per treatments. The remaining dose of N was applied in two splits each at knee high stage and silking stage. All recommended agronomic practices were followed throughout the crop period. The grain and stover yields were recorded from the net plot area and expressed as t/ha. The heat-use efficiency (HUE) and helio-thermal-use efficiency (HTUE) were calculated as per the formula given by Monteith (1984).

1Corresponding author’s Email: ashusudan285@gmail.com
1Ph.D. Scholar, 2Professor and Registrar, 3Assistant Professor, Division of Agronomy, 4Senior Scientist, Soil Science (Farming System Research), SKUAST-J, Chatha, Jammu, Jammu and Kashmir 180 009
June 2017] RESPONSE OF MAIZE TO FERTILITY LEVELS DURING SPRING SEASON 225

\[
HUE (kg/ha/°C/day) = \frac{\text{Total grain yield (kg/ha)}}{\text{GDD}}
\]

where GDD, growing degree days

\[
HTUE (kg/HTU) = \frac{\text{Grain yield (kg)}}{\text{HTU}}
\]

where, HTU, helio-thermal unit

Wider row spacing of 70 cm significantly increased in dry-matter accumulation/plant as compared to closer row spacing of 60 cm. Comparatively thicker stem in wider row spacing because of better availability of space and light might have attributed to more dry matter accumulation (Kumar and Puri, 2001). Early maturing hybrid ‘JH 3459’ had higher plant height than ‘PMH 1’. However, trend was reversed at maturity when ‘PMH 1’ attained higher plant height than hybrid ‘JH 3459’. It was due to reason that hybrid ‘JH 3459’ is early-maturing hybrid and was vigorous in growth during the initial growth, whereas ‘PMH 1’ is of long duration and attain comparatively more height at maturity because of genetic constitution. A significant variation in dry-matter accumulation by both cultivars was noticed. The ‘PMH 1’ accumulated significantly higher dry-matter than ‘JH 3459’. This might be because of comparatively higher leaf-area index than ‘PMH 1’ which helps in dry-matter production. Fertilizer application had a significant effect on periodic plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matter accumulation of spring maize. It is evident from the results that though each incremental dose of fertilizers increased the plant height, leaf-area index and dry-matter accumulation, but N 140P30.57 K29.17 kg/ha recorded the highest plant height, leaf-area index and dry-matte...
These results confirm the findings of Sharma et al. (2016). Significant increase in grain and stover yield of spring maize was recorded up to fertility level N140P30.57K29.17 kg/ha and it was statistically at par with N 120P26.20K25 kg/ha (Table 1). This might be owing to significant improvement of yield attributes, viz. grains/cob, 1,000-grain weight and cobs/plant, under better nutrient supply. Similar results were also reported by Gul et al. (2015). Variety ‘PMH 1’ had higher harvest index than ‘JH 3459’ which might be because of higher grain yield of ‘PMH 1’. The practicability and usefulness of a treatment is judged ultimately in terms of net returns. Among the spacing and varieties, the closer row spacing of 60 cm and variety ‘PMH 1’ proved more remunerative than wider row spacing of 70 cm and variety ‘JH 3459’. Application of N120P26.20K25 kg/ha fertility level showed the highest benefit: cost ratio. Similar results were reported by Sahoo and Mahapatra (2007). The higher HUE and HTUE of spring maize was observed at closer row spacing of 60 cm than wider row spacing of 70 cm owing to higher grain yield in closer row spacing (Table 1). Variety ‘JH 3459’ recorded higher HUE and HTUE than variety ‘PMH 1’ which might be because of shortened growth period (lesser GDD accumulation) of variety ‘JH 3459’ (Table 1). However, fertility levels had favourable effects on HUE and HTUE. An improvement in the HUE and HTUE was observed with the increase in fertility level as a result of fertilization that enhanced the ability of the plant to utilize thermal heat for its development (Singh and Hadda, 2014). Post-harvest nutrient status increased with increase in fertility levels (Table 2). This indicates that besides increased uptake of NPK, the availability of N, P and K in soil also got augmented by increase in applied nutrients. The N, P and K uptake increased significantly with increase in plant density (Table 2). So far as varieties are concerned, the total uptake of N, P and K was higher in ‘PMH 1’ than ‘JH 3459’. Significant enhancement in uptake of N, P and K with the increase in fertility was due to higher biological yield as well as content of nutrients with higher dose of fertility levels (Table 2).

It may be concluded that closer row spacing of 60 cm results in significantly higher grain yield than wider row spacing of 70 cm. Among the tested hybrids, ‘PMH 1’ is the most promising cultivar than the hybrid ‘JH 3459’. The fertility level N120P26.20K25 kg/ha is the most suitable dose for achieving good yield of spring maize.

REFERENCES

Monteith, J.C. 1984. Consistency and convenience in the choice of units for agricultural sciences. *Experimental Agriculture* 20:
115–117.